STUDY UNIT DESCRIPTION

Faculty of Electrical Engineering

CODE	
TITLE	Theory of automatic control
LEVEL	02 - Years 2, 3 in Modular Undergraduate Course
ECTS CREDITS	7
DEPARTMENT	Electric Drives
DESCRIPTION	Fundamentals of systems' dynamics: differential equations, Laplace transform, transfer functions. Typical dynamic elements, their mathematical description, transient functions, application for electromechanics.
	Analysis of systems in the frequency domain: amplitude-to- frequency and phase-to-frequency characteristics, logarithmic characteristics. Analysis of systems' stability. Correlation between frequency characteristics and transients.
	Closed-loop systems. Multi-loop cascade control principle. Feedbacks and regulators. Synthesis of regulators according to the given optimization criteria.
	Discrete systems. Analysis of dynamic systems in the z-domain. Stability of discrete systems, synthesis of discrete regulators.
	Study-unit Aims:
	The unit gives mathematical base for the analysis and synthesis of control systems for electric drives. The unit outlines approaches for improvement of dynamical performances of electromechanical systems.
	Learning Outcomes:
	 <u>Knowledge & Understanding</u>: By the end of the study-unit the student will be able to: make transfer function of any dynamic element/process basing on its differential equations; arrange feedbacks and regulators in the control system; estimate system's stability; build regulators and calculate their parameters to meet certain target criteria.
	2. <u>Skills:</u>
	 By the end of the study-unit the student will be able to: compose the structure of the closed-loop control system for typical electric drives; perform calculations concerning analysis of system's

performances and improve system's dynamics.

Main Text/s and any supplementary readings:

- Automation control System. Farid Golnaragh (Simon Fraser University), Benjamin C. Kuo (University of Illinois at Urbana-Champaing)

- Constantine H. Houpis-Quantitative Feedback Theory_ Fundamentals and Applications (Automation and Control Engineering)-CRC Press (1999)

- Automation and Control Engineering Shankar P. Bhattacharyya, Aniruddha Datta, Lee H. Keel-Linear Control Theory_ Structure, Robustness, and Optimization (Automation and Control Engineering).

ADDITIONAL

NOTES Pre-requisite Study-units: Theoretical fundamentals of electrical engineering, Electrical machines.

STUDY-UNIT	
TYPE	Lecture and Tutorial, laboratory works

METHOD OF

ASSESSMENT	Assessment Component/s	Resit Availability	Weighting
	Practical	No	10%